2/3y^2=8

Simple and best practice solution for 2/3y^2=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3y^2=8 equation:



2/3y^2=8
We move all terms to the left:
2/3y^2-(8)=0
Domain of the equation: 3y^2!=0
y^2!=0/3
y^2!=√0
y!=0
y∈R
We multiply all the terms by the denominator
-8*3y^2+2=0
Wy multiply elements
-24y^2+2=0
a = -24; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-24)·2
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-24}=\frac{0-8\sqrt{3}}{-48} =-\frac{8\sqrt{3}}{-48} =-\frac{\sqrt{3}}{-6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-24}=\frac{0+8\sqrt{3}}{-48} =\frac{8\sqrt{3}}{-48} =\frac{\sqrt{3}}{-6} $

See similar equations:

| n/n/8=9 | | 10t-2=4(t+7) | | -a+14=11 | | 45*x*20=0 | | 19=y/2+15 | | 5+5y=-26 | | 15=3(5+-1y)+3y | | x-3/18=5/12 | | 8/11=19/22+29x/11 | | -x2+5x-7=0 | | 5x-8x=-56 | | -10-8c/5=7 | | 2k^2-63+11k=0 | | 5(x-6)=2(x+9) | | x+2(x-5)=-3(4) | | 4(x+2)=2(x+25) | | −7.85=x−3.14 | | 8x-17=2x+8 | | 19=a-7.4 | | 8x^-200=0 | | x+5/6=8/8 | | -8z=-17-7 | | 3x+17=4(x-3) | | x^2+x=x^2+6 | | 5(x-6)=2(x-9) | | 5(x-6)=2(x+25) | | n+n-24=90 | | 288-2x^2=0 | | n+n-74=180 | | n+n-42=180 | | 4(x+6)=2(x+25) | | (−1−i)(−5−8i)=13+8i |

Equations solver categories